2021 Kawasaki Z H2

2021 Kawasaki Z H2
Metallic Diablo Black / Metallic Flat Spark Black
MSRP: $17,500.00
Manufacturer: Kawasaki
Condition: New

Specifications

POWER

Engine
4-stroke, 4-cylinder, DOHC, 4-valve, liquid-cooled, supercharged
Displacement
998cc
Bore x Stroke
76.0 x 55.0mm
Compression Ratio
11.2:1
Fuel System
DFI, 40mm Throttle Bodies
Ignition
TCBI w/ Digital Advance
Transmission
6-speed dog-ring, return shift
Final Drive
Sealed chain
Electronic Rider Aids
Integrated Riding Modes, Kawasaki Cornering Management Function (KCMF), Power Modes (3), Kawasaki Launch Control Mode (KLCM), Kawasaki Traction Control (KTRC), Kawasaki Launch Control Mode (KLCM), Kawasaki Engine Brake Control (KEBC), Kawasaki Intelligent anti-lock Brake System (KIBS), Kawasaki Quick Shifter (KQS) (upshift & downshift), Electronic Cruise Control
Maximum Torque
101.0 lb-ft
 

PERFORMANCE

Front Suspension / Wheel Travel
Showa SFF-BP Fork with Adjustable Compression and Rebound Damping, Spring Preload Adjustability
Rear Suspension / Wheel Travel
Uni-Trak®, Showa Gas-Charged Shock with Adjustable Compression and Rebound Damping, Preload Adjustability
Front Tire
120/70-17
Rear Tire
190/55-17
Front Brakes
Dual 320mm Disc w/Radial-mount Brembo M4.32 Calipers, KIBS
Rear Brakes
Single 250mm disc with single-piston caliper, KIBS
 

DETAILS

Frame Type
Trellis, high tensile steel
Rake/Trail
24.9°/4.1in
Overall Length
82.1 in
Overall Width
31.9 in
Overall Height
44.5 in
Ground Clearance
5.5 in
Seat Height
32.7 in
Curb Weight
527.0 lb**
Fuel Capacity
5.0 gal
Wheelbase
57.3 in
Special Features
Rideology the App Smartphone Connectivity, TFT Instrumentation
Color Choices
Metallic Diablo Black / Metallic Flat Spark Black
Warranty
12 Month Limited Warranty
Kawasaki Protection Plus™ (optional)
12, 24, 36 or 48 months
 

Features

ENGINE MANAGEMENT TECHNOLOGY

  • Assist & Slipper Clutch Based on feedback from racing activities, the Assist & Slipper Clutch uses two types of cams (an assist cam and a slipper cam) to either drive the clutch hub and operating plate together or apart. Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch spring load to be reduced, resulting in a lighter clutch lever feel when operating the clutch. When excessive engine braking occurs – as a result of quick downshifts (or an accidental downshift) – the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and helps prevent the rear tire from hopping and skidding. This race-style function is particularly useful when sport or track riding.
  • Electronic Cruise Control Electronic Cruise Control allows a desired speed (engine rpm) to be maintained with the simple press of a button. Once activated, the rider does not have to constantly apply the throttle. This reduces stress on the right hand when traveling long distances, enabling relaxed cruising and contributing to a high level of riding comfort.
  • Electronic Throttle Valves Kawasaki’s fully electronic throttle actuation system enables the ECU to control the volume of both the fuel (via fuel injectors) and the air (via throttle valves) delivered to the engine. Ideal fuel injection and throttle valve position results in smooth, natural engine response and the ideal engine output. The system also makes a significant contribution to reduced emissions. Electronic throttle valves also enable more precise control of electronic engine management systems like S-KTRC and KTRC, and allow the implementation of electronic systems like KLCM, Kawasaki Engine Brake Control, and Electronic Cruise Control.
  • KLCM (Kawasaki Launch Control Mode) Designed to assist riders by optimizing acceleration from a stop, KLCM electronically manages engine output to minimize wheel spin when moving off. With the clutch lever pulled in and the system activated, engine speed is limited to a determined speed while the rider holds the throttle open. Once the rider releases the clutch lever to engage the clutch, engine speed is allowed to increase, but power is regulated to minimize wheel spin and help keep the front wheel on the ground. The system disengages automatically once a predetermined speed has been reached, or when the rider shifts into third gear. Depending on the model, riders can choose from multiple modes, each offering a progressively greater level of intrusion.
  • KCMF (Kawasaki Cornering Management Function) Using the latest evolution of Kawasaki’s advanced modeling software and feedback from a compact IMU (Inertial Measurement Unit) that gives an even clearer real-time picture of chassis orientation, KCMF monitors engine and chassis parameters throughout the corner – from entry, through the apex, to corner exit – modulating brake force and engine power to facilitate smooth transition from acceleration to braking and back again, and to assist riders in tracing their intended line through the corner. The systems that KCMF oversees vary by model, but may include: • S-KTRC/KTRC (including traction management and wheel lift management) • KLCM (including traction management and wheel lift management) - Designed to optimize acceleration from a stop • KIBS (including pitching management and corner braking management) • Kawasaki Engine Brake Control
  • KTRC (Kawasaki Traction Control) (1-mode) When accelerating on a slippery surface, the rear wheel may spin (i.e. when the rear wheel turns faster than the front wheel). KTRC was designed to minimize wheel spin that could otherwise cause the loss of control of the bike. Like ABS helps prevent wheels from locking up when braking, Kawasaki’s original traction control system minimizes rear tire slippage. Knowing that the system will intervene to prevent sudden wheel spin when, for example, the pavement comes to an abrupt end when touring, is a great source of reassurance for riders. KTRC uses wheel speed sensors to monitor front and rear wheel speed. When it detects wheel spin, engine power is reduced to allow rear wheel grip to be regained. KTRC also helps the rear wheel regain traction in situations where grip is lost temporarily, like when riding over a wet manhole cover. KTRC uses 3-way control, governing ignition timing, fuel volume and (via the sub-throttle valves) intake air volume. This 3-way control is what enables the system to be so smooth, resulting in a very natural feeling.
  • Power Modes Models equipped with multiple Power Modes offer riders an easily selectable choice of engine power delivery to suit riding conditions or preference. In addition to Full Power mode, one (Low) or two (Middle, Low) alternate mode(s) in which maximum power is limited and throttle response is milder are provided.
  • Smartphone Connectivity Clever technology enables riders to connect to their motorcycle wirelessly. Using the smartphone application “RIDEOLOGY THE APP,” a number of instrument functions can be accessed, contributing to an enhanced motorcycling experience. Vehicle information (such as the odometer, fuel gauge, maintenance schedule, etc) can be viewed on the smartphone. Riding logs (varies by model, but may include GPS route, gear position, rpm, and other information) can be viewed on the smartphone. When connected, telephone (call, mail) notices are displayed on the instrument panel. Riders can also make changes to their motorcycle’s instrument display settings (preferred units, clock and date setting, etc) via the smartphone. And on certain models, it is even possible to check and adjust vehicle settings (such as Rider Mode, electronic rider support features, and payload settings) using the smartphone.
  • Sound Tuning Kawasaki has long had a reputation for building great-sounding bikes – a characteristic inherent in the Kawasaki engine architecture – but it is only recently that effort has been put into crafting a specific auditory experience through careful sound tuning of either the intake or exhaust system. Designed specifically to allow riders to enjoy their motorcycles aurally as well as physically, the carefully crafted auditory notes can be the key components of the street riding exhilaration offered by models that have benefitted from sound tuning. Sound tuning can include conducting sound research, designing intake and exhaust system components based on an acoustic test carried out in a sound room, and careful consideration of every detail of a system’s components to ensure a balance of performance and the desired sound.
  • Supercharged Engine Drawing on the know-how and technology possessed by the Kawasaki Heavy Industries, Ltd. (KHI), Kawasaki’s supercharged engine delivers high engine output while maintaining a compact design. The key to achieving this incredible performance lies in the engine’s supercharger – a motorcycle-specific unit designed completely in-house with technology from the Kawasaki Gas Turbine & Machinery Company, Aerospace Company and Corporate Technology Division. One of the greatest benefits of designing the supercharger in-house and tailoring its design to match the engine’s characteristics was that engineers were able to achieve high-efficiency operation over a wide range of conditions – something that would not have been possible by simply dropping in or trying to adapt an aftermarket automotive supercharger. The importance of high efficiency in a supercharger is that, as the air is compressed, power-robbing heat gain is minimal. And while many superchargers are able to offer high-efficiency operation in a very limited range of conditions, the Kawasaki supercharger offers high efficiency over a wide range of pressure ratios and flow rates – meaning over a wide range of engine speeds and vehicle speeds. This wide range of efficient operation (similar to having a wide power band) easily translates to strong acceleration. The supercharger’s high efficiency and minimal heat gain also meant that an intercooler was unnecessary, greatly saving weight and space, and enabling the engine’s compact design.

CHASSIS MANAGEMENT TECHNOLOGY

  • ABS (Anti-lock Brake System) Kawasaki ABS systems use front and rear wheel sensors to constantly monitor wheel speed. Should information from either of the sensors indicate that wheel lock has occurred, the ABS ECU directs the pump in the ABS unit to modulate brake fluid pressure (releasing and reapplying pressure so that traction can be regained) until normal operation resumes. ABS offers rider reassurance that contributes to greater riding enjoyment.
  • IMU-Enhanced Chassis Orientation Awareness The strength of Kawasaki’s cutting-edge electronics has always been the highly sophisticated programming that, using minimal hardware, gives the ECU an accurate real-time picture of what the chassis is doing. Kawasaki’s proprietary dynamic modeling program makes skillful use of the magic formula tire model as it examines changes in multiple parameters, enabling it to take into account changing road and tire conditions. The addition of an IMU (Inertial Measurement Unit) enables inertia along 6 DOF (degrees of freedom) to be monitored. Acceleration along longitudinal, transverse and vertical axes, plus roll rate and pitch rate are measured. The yaw rate is calculated by the ECU using Kawasaki original software. This additional feedback contributes to an even clearer real-time picture of chassis orientation, enabling even more precise management for control at the limit. With the addition of the IMU and the latest evolution of Kawasaki’s advanced modeling software, Kawasaki’s electronic engine and chassis management technology takes the step to the next level – changing from setting-type and reaction-type systems to feedback-type systems – to deliver even greater levels of riding excitement.
  • KIBS (Kawasaki Intelligent anti-lock Brake System) Kawasaki developed KIBS to take into account the particular handling characteristics of supersport motorcycles, ensuring highly efficient braking with minimal intrusion during sport riding. It is the first mass-production brake system to link the ABS ECU (Electronic Control Unit) and engine ECU. In addition to front and rear wheel speed, KIBS monitors front brake caliper hydraulic pressure, throttle position, engine speed, clutch actuation and gear position. This diverse information is analyzed to determine the ideal front brake hydraulic pressure. Through precise control, hydraulic pressure is modulated in much smaller increments than with standard ABS systems. The system limits rear wheel lift under heavy braking and takes downshifting into account while braking, allowing the rider to manage the rear brake. And because of the finer control, kickback to the brake lever is minimal, resulting in a very natural feeling.

All inventory listed is subject to availability and prior sale. Manufacturer's Suggested Retail Price (MSRP) if shown for a vehicle excludes set-up, freight, taxes, title, licensing or other dealer charges, and is subject to change. Individual prices may vary. Please request a quote for specific pricing.

Request Quote or More Information








Store Hours
  • M-F: 9:00 am - 6:00 pm
  • Sat: 9:00 am - 2:00 pm
  • Sun: Closed
  • 3712 Airline Rd.
  • Muskegon MI 49444
Contact Us
  • Babbitt's Sports Center
  • Online Parts: (231)737-4542
  • Store Sales: (231)737-9241
  • Service Appt: (231)220-2128
  • orderinfo@babbittsonline.com

Division of BabbittsOnline.com

Order & Return Policy | Risk Free Apparel Exchange Policy | Babbitt's Guarantee

©2012-2020 All Rights Reserved. Babbitt's Online also sells Arctic Cat parts, Honda parts, Honda Generators, Kawasaki parts, KTM parts, Polaris parts, Suzuki parts and Yamaha parts through our Partshouse brand as well as at our flagship site Babbitt's Online. Site Powered by vNext Technologies, Inc.

Babbitt's Sports Center | (231) 737-4542 | 3712 Airline Rd, Muskegon MI 49444

15